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A VISION THAT COULD INSPIRE A MORE FOCUSED

PROGRAM DEVELOPMENT: 

          IMPLEMENT A NEW EPOCH OF WATER MANAGEMENT

                                 IN OUR LIFETIMES THAT IS FACILITATED

                                         BY OBSERVATIONS AND IMPROVED

                                                             PREDICTION SYSTEMS.  

OBSERVATIONS

INTEGRATED DECISION

 SUPPORT SYSTEMS

IMPROVED CAPABILITY
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A VISION FOR THE PLANETARY WATER CYCLE

(Courtesy R. Lawford)
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(Courtesy of K Takeuchi)



Advances in space observations for the
Global Water Cycle

Soil

Moisture
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Current missions have a capacity to

monitor the global water cycle.

Missing:     Wind

Poor:        River/lake monitoring

Improving:  Precipitation, Soil

       Moisture, Snow



dtSdQQEP gs /++=

where Qs is river discharge, Qg is groundwater

discharge across basin boundary

and where S = Ssm + Ssn + Slw + Sg

Ssm soil moisture

Ssn  snow

Slw  lakes and wetlands

Sg  ground water

Sgi  glaciers and ice sheets

Land surface water budget (e.g., for a river basin):

For land surface models

P  observed

E, Qs, Qg , dS/dt  parameterized

For remote sensing retrievals (models)

Qs, Qg  observed

E, P, dS/dt  parameterized



Atmospheric water budget over a region (e.g.
river basin):

where:

 are basin-averaged evapotranspiration and 

precipitation (as for surface water balance)

Q =    vertically integrated water vapor transport

W =   vertically integrated water vapor

Wc =  vertically integrated cloud liquid water
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Challenges facing remote sensing

1. Issues of scale, and sub-pixel “contamination” and

parameterizations.
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Spatial Variability of Land Surface



Soil Moisture from Space
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Soil moisture retrievals and in-situ measurements
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Time series from different sources, measured at different

scales behave differently; yet they are correlated and show

skill in data assimilation – how to evaluate them?

In-situ (points over the region); VIC (10 km); TMI (~35 km)
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ISCCP 2.5-degrees MODIS 5-km

CERES 25-km

Surface insolation products for estimating ET (land heat fluxes)



Surface Energy Balance Model (SEBS) Model Approach

Wind, air temperature, humidity

(aerodynamic roughness, 

thermal dynamic roughness)

Basically SEBS calculates H using similarity theory, then

constrains the estimates of H and E based on wet (radiation

limited) and dry (water limited) conditions.

Various sub-modules for calculating needed components…

Stability 

functions

Potential

temperature

gradient



ASTER* 90m LSTLandSat 60m LST

MODIS 1km LST MODIS 5km LST

The issue of spatial scale



LandSat based ET

MODIS 1km based ET

ASTER based ET

MODIS 5km based ET



1-km MODIS Aqua  (QC

Level 1&2:   accuracy <=2K

Available MODIS

LST for August 2003

5-km MODIS Aqua (QC

Level 1&2:   accuracy <=2K

5-km MODIS Aqua (QC

Level 3:   accuracy 2K - 3K



Most land surface models use a Penman-Monteith

parameterization, which doesn’t use a surface

temperature, but only needs 2-m air temperature and

humidity, thereby making it impossible to have the

spatial detail approaches like SEBS.

What parameterization should be used for

continental-scale water budget studies i.e. ‘climate’

studies?

How to determine which is more accurate at large

scales?



Challenges facing remote sensing

1. Issues of scale, and sub-pixel “contamination” and

parameterizations

2. Remote sensing validation (and calibration) at large-

scales: a new paradigm is needed.
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Soil Moisture “Valuation” via Data Assimilation

Instead of comparing remotely-sensed soil moisture to ground

measurements, look for how much the soil moisture product can

contribute when it is assimilated into a (simple) land surface

model (LSM) driven by poor rainfall forcings (after Crow, 2007).

Simple API 

LSM
Poor Rainfall Poor SM

Good Rainfall

(e.g. NWS/CPC)

Rainfall

Differences   

Remote Sensing

SM

Filter K

Analysis Increment

K* SM (correction)
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“R Proxies” using VIC and AIRS Ts for soil moisture retrievals

Before Calibration After Calibration
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GFS

4-DDA

predictions

CMORPH

TRMM

3BRT42

Real-time data availability for hydrology – the options
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GTS

(in-situ) daily

precipitation

stations



TRMM 3B42 merged high quality infrared precipitation product- 3hrly

0.25 x 0.25 degree gridded estimates of global precipitation [mm/hr]

(instantaneous precipitation rate at the nominal observation time)

 algorithm available at: http://trmm.gsfc.nasa.gov/3b42.html

7/31/2000 0600 UTC

Data availability for hydrology – satellite precipitation
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7/31/2000 0900 UTC7/31/2000 1200 UTC7/31/2000 1500 UTC



Estimated forecast error versus

CPC for a number of 1-degree

boxes in the SGP (US region)

(July 1, 2002 to Dec 31, 2005)
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Estimated forecast error versus

CPC spatially averaged for all

boxes and retrievals.

Using adaptive filtering to estimate errors from satellite-

retrieved precipitation (from Crow and Bolton, 2007)

RMS Error versus CPC rainfall errors [mm/day] RMS Error versus CPC rainfall errors [mm/day]



Challenges facing remote sensing

1. Issues of scale, and sub-pixel “contamination” and

parameterizations

2. Remote sensing validation (and calibration) at large-

scales: a new paradigm is needed.

3. Understanding consistency among retrieved data

fields – new approaches for data assimilation.  Lots of

activity happening.
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Soil Moisture Rainfall Heat Flux Humidity Index

(From McCabe and Wood, RSE, 2007)

Key issues with remote sensing of water cycle:

• How reliable are independent observations?

• Can we model/monitor water & energy fluxes

through land-atmosphere-ocean systems (recycling)?

• Can we monitor/predict drought/flood risk?

• How to link observations with models – scale issues?

• How to harness remote observations to make system level

predictions/responses



Summary.

Through modeling and remote sensing it is possible

today to carry out water budget studies – perhaps even

using only remote sensing.  But, we still don’t know how

good these estimates are, or how good we need them to

be.

A final workshop proposal:  as a community we should

assess the current state of the water system, and

perhaps a retrospective (~1990) assessment.  Thiscould

be a GEWEX activity, perhaps with the UN’s Program

on Sustainable Development or the World-wide Water

Assessment Programme.


